

Rigid Motion with Parallel Lines and Congruent Triangles

Unit 1B-Rigid Motion with Parallel Lines and Congruent Triangles

Learning Targets

1.6 Angle Pairs

17. I can use angle pair relationships to find unknown values or angle measures.
a. Adjacent
b. Linear Pair
c. Supplementary
d. Complementary
e. Vertical angles
18. I can use angle pair relationships formed by parallel lines cut by a transversal.
a. Corresponding Angles
b. Alternate Interior Angles
c. Alternate Exterior Angles
d. Same Sided Interior Angles
e. Same Sided Exterior Angles

1.7 Transformations to prove congruency

19. I can demonstrate using rigid motions that two figures are congruent by 1:1mapping.

1.8 Congruent Triangles

20. I can write a congruency statement of congruent figures.
21. I can identify corresponding parts of congruent figures.
22. I can determine if two triangles are congruent by SSS, SAS, ASA, AAS, and HL using given markings and assumptions.
23. I can prove two triangles are congruent by SSS, SAS, ASA, AAS, and HL using givens, assumptions, and theorems.
24. I can use CPCTC in a proof.

1.9 Triangle Properties

25. I can solve for unknowns using the sum of the interior angles of a triangle is 180°.
26. I can solve for unknowns using the base angles of an isosceles triangle are congruent.
27. I can solve for unknowns using the exterior angle theorem.
28. I can solve for unknowns using the mid-segment (midline) of triangle theorem.

Geometry
1.6(1) Angle Pairs

Objective: I can use angle pair relationships to find unknown values or angle measures (Target 17)
When two lines intersect in a plane, a number of angles are formed. In the diagram below, the intersection of line m and line n is point A. There exist different types of angle pairs with various relationships.

1. Determine whether the angles are VERTICAL ANGLES, a LINEAR PAIR, ADJACENT ANGLES, or NEITHER.

$\angle 1$ and $\angle 2$

2. Solve for x and y.

$$
62+x+24=180
$$

$$
\begin{aligned}
& \begin{array}{c}
2 y+62=180 \\
-162-62
\end{array} \\
& \frac{p y}{x}=\frac{118}{2} \\
& y=59
\end{aligned}
$$

To prove something is to logically establish connections from what you know to what you want to prove while providing accurate reasoning for each conclusion. You must explain what you know and why you know it.

VERTICAL ANGLES

Prove the Vertical Angles Theorem ...

Prove: $\angle D E A \cong \angle B E C$

1. \boldsymbol{D} rotates 180° around point E and maps to \boldsymbol{D}^{\prime} on opposite ray $\overrightarrow{E B}$.
2. Similarly, \boldsymbol{A} rotates 180° around point E and maps to \boldsymbol{A}^{\prime} on opposite ray $\overrightarrow{E C}$.
3. Now $\angle D^{\prime} E A^{\prime} \cong \angle B E C$ because the angles use the same rays and vertex.

Find $\mathbf{m} \angle \mathbf{1}$ and $\mathbf{m} \angle \mathbf{2}$	Solve for \boldsymbol{x}	Find $\mathbf{m} \angle$ PEG
$\mathbf{m} \angle \mathbf{1}=\mathbf{3 4} 4^{\circ}($ vertical $\angle \mathrm{s} \cong)$ $\mathbf{m} \angle \mathbf{1}+\mathrm{m} \angle 2=180^{\circ}($ linear pair $)$ $\mathbf{3 4} 4^{\circ}+\mathrm{m} \angle 2=180^{\circ}($ substitution $)$ $\mathbf{m} \angle \mathbf{2}=\mathbf{1 8 0}-\mathbf{3 4}=\mathbf{1 5 6}^{\circ}$	$2 \mathrm{x}+16=124($ vertical $\angle \mathrm{s} \cong)$ $2 \mathrm{x}=108$ $\mathbf{x}=\mathbf{5 4}$	$5 \mathrm{x}-4=3 \mathrm{x}+16($ vertical $\angle \mathrm{s} \cong)$
$2 \mathrm{x}=20$		
$\mathrm{x}=10$		

4.

b) Find x

c) Find x and $m \angle C A B$

5. Use the diagram to find all missing angles.

$$
\begin{aligned}
& \mathrm{m} \angle 1=\frac{62^{0}}{31^{0}} \\
& \mathrm{~m} \angle 3=3{ }^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{m} \angle 2=\frac{87^{\circ}}{\mathrm{m} \angle 4=} \\
& 7^{\circ}
\end{aligned}
$$

6. Given the diagram, find the following. Use correct notation.

A linear pair: \qquad and \qquad LENA

The complement to $\angle E N L$: \qquad LING
\qquad
The adds to 180° with \qquad Lena and LING
Another linear pair: \qquad LINA what makes \qquad 0° with 19°
7. Complete each statement using the diagram shown.
$\angle A G B$ and \qquad LEGO are vertical angles. $\angle B G C$ and $\angle B G F$ form a linear pair.
$\angle F G D$ is supplementary to \qquad LCD
$\angle E G D$ and $\angle D G C$ are adjacent.
$\angle B G C$ is complementary to $\angle C G D$.
\qquad

Geometry
1.6(2) Angle Pairs

Objective: I can determine the relationships of angles formed by two parallel lines cut by a transversal (Target 19)

When a line intersects two parallel lines, EIGHT angles are formed. We are now going to learn about the different pairs of angle relationships.

The line that intersects the parallel lines is called the TRANSVERSAL.
What is the transversal in the diagram shown?

The angles whose interior points lie BETWEEN the parallel lines are INTERIOR.
Which angles are interior in the diagram shown? $\leq 1, \angle 3,4 b_{1},<8$
The angles whose interior points lie OUTSIDE of the parallel lines are EXTERIOR. Which angles are exterior in the diagram shown? $\angle 2, \angle 4, \angle 5, \leqslant 7$

CORRESPONDING ANGLES
A pair of angles that have the same relative position at both intersections where the transversal crosses each parallel line are called CORRESPONDING ANGLES.

What are the corresponding angle pairs in the diagram?

$$
\begin{aligned}
& \angle 7 \text { and } \angle 8 \\
& \angle 3 \text { and } \angle 4 \\
& \angle 5 \text { and } \angle 6 \\
& \angle 2 \text { and } \angle 1
\end{aligned}
$$

ALTERNATE INTERIOR and EXTERIOR ANGLES
A pair of angles that lie on alternating sides of the transversal.
What are the alternate exterior angle pairs in the diagram?

$$
\angle 2 \text { and }<5<4 \text { and } \angle 7
$$

What are the alternate interior angle pairs in the diagram?

$$
\angle 3 \text { and } \angle 8 \text { Li and } 26
$$

SAME SIDE (CONSECUTIVE) INTERIOR and EXTERIOR ANGLES
A pair of angles that lie on the same sides of the transversal.
What are the same side (consecutive) interior angle pairs in the diagram?

$$
\angle 3 \text { ard } \angle 6 \angle 1 \text { and } \angle 8
$$

What are the same side (consecutive) exterior angle pairs in the diagram?

$$
\angle 4 \text { and } \angle 5 \angle 2 \text { and } \angle 7
$$

1. Give the name of the relationship of each angle pair for the diagram shown.

2. Give the name of the relationship of each angle pair for the diagram shown.

3. Given $a \| b$ and p is a transversal. If $m \angle 1=140^{\circ}$, find the measure of each angle giving one reason for each answer.

$$
m \angle 2=40^{\circ}
$$

$$
m \angle 4=140^{\circ}
$$

$$
m \angle 6=40^{\circ}
$$

$$
\begin{aligned}
& m \angle 3=40 \\
& m \angle 5= \\
& m \angle 7=
\end{aligned}
$$

 same side interior

4. Find the measure of each angle and provide the reason for your answer.

Geometry
1.6(3) Angle Pairs

Objective: I can use angle pair relationships formed by two parallel lines cut by a transversal to find unknown values or angle measures (Target 18)

1. Using the diagram to the right, identify the relationship for the pair of angles.
a) $\angle 8$ and $\angle 12 \mathrm{Corr}$.
e) $\angle 2$ and $\angle 9$ alt. int.
b) $\angle 12$ and $\angle 1$ alt. ext.
f) $\angle 4$ and $\angle 5$ same side $\frac{\text { int. }}{\text { sane side }}$
c) $\angle 1$ and $\angle 7$ alt. ext.
g) $\angle 3$ and $\angle 9$ \qquad same
d) $\angle 10$ and $\angle 5$ side ext.
h) $\angle 5$ and $\angle 1$
corr.

2. Identify the relationship of the angles and what they are to each other. Write the equation used to solve for x. Then, find the value of x.
a)

relationship: corresponding
Congruent o Supplementary?

solve:

$$
\begin{aligned}
x+80 & =\frac{5 x}{-x} \\
-\frac{80}{4} & =\frac{x}{4} \\
x & =20
\end{aligned}
$$

b)

relationship: alternate interior
Congruent Supplementary?
equation:

$$
\begin{aligned}
65-x & =2 x-10 \\
65-x & =2 x-10 \\
65 & =3 x-10 \\
75 & =3 x \\
x & =25
\end{aligned}
$$

$$
\text { solve: } 65-x=2 x-10
$$

c)

relationship: alternate exterior
Congruent o Supplementary?

e)

relationship: None directly
Congruent o Supplementary?
equation: $3 x+15+2 x=180$ solve:

$$
5 x=165
$$

$$
x=33
$$

d)

relationship: Some side interior
Congruent or supplementary? \rightarrow add them $=180^{\circ}$
equation: $3 x-10+5 x+30=180$
solve: $\quad 3 x-10+5 x+30=180$

$$
8 x+2 \%=180
$$

f)

$$
\frac{8 x}{}=\frac{200}{8}
$$

relationship: none directly
Congruent Supplementary?

3. Solve for the unknown values.
a) $x=$ \qquad

$5 x-4=46$ $5 x=50$

b) $x=$ \qquad

$$
20 x+4+x+50=180
$$

$$
21 x+54=180
$$

$$
21 x=126
$$

c) $x=$ \qquad
 $x=6$
4. Solve for the unknown values. Lines that appear parallel are.
a) $x=$ \qquad

b) $x=$

$6 x+13 x-10=180$

c) $x=16$

$$
7 x-25=2 x+55
$$

5. Find the values of x and y. Put a box around your answer.
a)

c)

b)

d)

Geometry
1.7 and 1.8(1) Transformations to prove congruency and Congruent Triangles

Objective: I can demonstrate that two figures are congruent by one-to-one mapping using rigid transformations, I can write a congruency statement for congruent figures, and I can identify corresponding parts of congruent figures (Targets 19-21)

Review: Isometric transformations (also called rigid motions) are transformations that preserve the size and shape of the pre-image. The isometric transformations are REFLECTION, ROTATION, TRANSLATION.

We can use isometric transformations to map one figure onto another to determine congruence.

A translation by $<6,-3>$
maps these two quadrilaterals,
so QRST $\cong \mathrm{UVWX}$
:---:
:---:

$\triangle A B C \cong \triangle Z Y R$ because I can map $\triangle A B C$ onto $\triangle Z Y R$ using a rotation and then a reflection.
Original Relationship

$$
\text { - } R_{\text {xaxis }} \text { (QRST) }
$$

1. Is $\mathrm{QRST} \cong \mathrm{PLKJ}$? If so, find the sequence t of isometric transformations that map one onto the other.

A congruence statement relates the pre-image to the image by identifying the corresponding parts. $\langle-b ; 3\rangle$
Quad $\mathrm{ABCD} \cong$ Quad MNOP

Congruent Corresponding Sides	Congruent Corresponding Angles
$\overline{A B} \cong \overline{M N}$	$\angle A \cong \angle M$
$\overline{B C} \cong \overline{N O}$	$\angle B \cong \angle N$
$\overline{C D} \cong \overline{O P}$	$\angle C \cong \angle O$
$\overline{D A} \cong \overline{P M}$	$\angle D \cong \angle P$

2. Complete the following for the examples below:

- Name the transformation (s)
- Complete the congruency statement
- List the pairs of congruent parts (angles and segments)
a)

Transformation (s):

$\triangle A B C \cong \triangle K L H$

$\cong \cong \angle ' s$	\cong segments
$\angle A \cong \angle K$	$\overline{A B} \cong \overline{K L}$
$\angle B \cong \angle C$	$\overline{B C} \cong \overline{L H}$
$\angle C \cong \angle H$	$\overline{A C} \cong \overline{K H}$

b)

Transformations):

\qquad
$A B C D \cong M P S R$

c)

$\mathrm{ABCD} \cong$ PYRE

\cong segments
$\overline{A B} \cong P Y$
$\overline{B C} \cong \overline{Y R}$
$\overline{C D} \cong \overline{R L}$
$\overline{D A} \cong \overline{L P}$

A congruence statement for triangles relates one identical object to another by identifying the corresponding parts that match each other.

$$
\begin{aligned}
& \angle A \cong \angle D \\
& \angle B \cong \angle E \\
& \angle C \cong \angle F
\end{aligned}
$$

CPCTC - Corresponding Parts of Congruent Triangles are Congruent.
What does this mean in simple terms?
if the Δ 's are congruent,
all corresponding parts are automatically congruent
3. Use CPCTC to determine all known information about the two triangles: $\triangle \mathrm{GEO} \cong \triangle \mathrm{TRY}$

$$
\begin{array}{ll}
\angle G \cong \angle T & \overline{G E} \cong \overline{T R} \\
\angle E \cong \angle R & \overline{E D} \cong \overline{R Y} \\
\angle O \cong \angle Y & \overline{G O} \cong \overline{T Y}
\end{array}
$$

4. Given $\triangle \mathrm{EFD} \cong \triangle \mathrm{HGI}$ with $\mathrm{GI}=4, \mathrm{IH}=6, \widehat{\mathrm{GH}}=8, \mathrm{~m} \angle \mathrm{H}=40^{\circ}$, and $\mathrm{m} \angle \mathrm{D}=75^{\circ}$. Find each.

5. The two triangles at the right are congruent.

Identify all corresponding parts

$\overline{A B} \underline{\underline{E D}}$
$\overline{A C} \hat{=} \overline{E F}$
$\overline{B C} \cong \overline{D F}$
$\mathrm{m} \angle \mathrm{I}=75^{\circ}$

$$
\mathrm{m} \angle \mathrm{G}=65^{\circ}
$$

$m \angle F$

$40+75=$ $180-115=$
65
H

Write a congruence statement:
Write two more congruence statements

1.8(3) Congruent Triangles

Objective: I can determine if two triangles are congruent by SSS, SAS, ASA, AAS, and HL using given markings and assumptions (Target 22)

The name of the game is to find the correct combination of corresponding congruent sides and angles that will allow you to prove the triangles congruent.

There are five "shortcut" combinations:

- SSS, or Side-Side-Side;
- SAS, or Side-Angle-Side;
- ASA, or Angle-Side-Angle;
- AAS, or Angle-Angle-Side; and
- HL, or Hypotenuse-Leg.

Most of the time, you must be explicitly given a congruency (told that it exists), or explicitly given a condition that would lead to a congruency (for example, if you are told that a segment is bisected, you can state that the bisected segment is divided into two congruent segments).

The only kinds of congruencies that you can "assume", without being told anything at all, are:
Rertical angles

THESE ARE THE ONLY CONDITIONS UNDER WHICH YOU CAN ASSUME THERE IS A CONGRUENCY!

Triangle Congruency Criteria

Side-Side-Side (SSS) Triangle Congruence Postulate:

If three sides in one triangle are congruent to three sides in another triangle, then the triangles are congruent.

1. Determine whether enough information is given to use the SSS Postulate for each diagram. If yes, write a congruence statement.
YES $\mathrm{OR}-\mathrm{NO}$
2. Determine whether enough information is given to use the SAS Postulate in each diagram. If yes, write a congruence statement.
YES-OR-NO
$\Delta H G K \cong \triangle F G K$
YES -OR NO
$\xrightarrow{\sim}$
(YES OR-NO
$\triangle A B C \cong \triangle H B M$

Angle-Side-Angle (ASA) Triangle Congruence Postulate:

If two angles and the included side in one triangle are congruent to two angles and the included side in another triangle, then the triangles are congruent.
3. Determine whether enough information is given to use the ASA Postulate. If yes, write a congruence statement.

4.a) Find the missing angles in the triangles below.

b) Make a conjecture (guess) about the missing angles in theses triangles.

The "THIRD-ANGLE THEOREM" is when two triangles have two pairs of congruent (matching) angles, then the third angles must also be congruent (matching).

Angle-Angle-Side (AAS) Triangle Congruence Postulate:

If two angles and the non-included side in one triangle are congruent to two angles and the non-included side in another triangle, then the triangles are congruent.
This is a modified version of the ASA Postulate where the third-angle theorem has been applied.
5. Determine whether enough information is given to use the AAS Postulate.

If yes, write a congruence statement.

SSA (ASS) is NOT a congruence postulate because it can result in two different triangles with the same information. However, there is a case of SSA (ASS) we CAN use as a congruence postulate.

This case is known as HL, or Hypotenuse (H) - Leg (L). It gets this special name because it is a right triangle. In a right triangle if you know two sides, you can use the Pythagorean Theorem to calculate the third side. Now you have SSS or SAS. HL forms a triangle congruence relationship.

6. Determine whether enough information is given to use HL. If yes, write the congruence statement.

7. Are the following pairs of triangles congruent?

If they are, name their congruence criteria (SSS, SAS, ASA, AAS, or HL)

c) YES-OR-NO
c) YES-OR-NO

BOWT COOL!
8. Are the following pairs of triangles congruent? If yes, create a congruent statement and name the congruence criteria (SSS, SAS, ASA, AAS, or HL).

a)

$\triangle D E C \cong \triangle$ NMC
Criteria AAS

(or ASA, if
using the vertical angles)
b)

Yes-OR-No
$\triangle D C E \cong \triangle$ RCE
Criteria ASA

c) Yes-OR- No
$\triangle F C D \cong \triangle C F T$

Criteria \qquad SAS

d)

angle is not
where the sides meet
e)

Geometry
1.8(4) Congruent Triangles

Objective: I can prove two triangles are congruent by SSS, SAS, ASA, AAS, and HL using givens, assumptions, and theorems (Target 23)

REMEMBER: The only things you can ever assume are:

Vertical angles

Reflexive property

Congruence Criteria and Proof: SSS and SAS
Side-Side-Side (SSS) Triangle Congruence Postulate: If three sides in one triangle are congruent to three sides in another triangle, then the triangles are congruent.
Side-Angle-Side (SAS) Triangle Congruence Postulate: If two sides and the included angle in one triangle are congruent to two sides and the included angle in another triangle, then the triangles are congruent.

1. Based on the given information, what additional information is needed in order to prove the triangles congruent by the SSS Postulate? TC $\cong G D$
Given: $\overline{C A} \cong \overline{D O}$ and $\overline{T A} \cong \overline{O G}$

Write a congruence statement.
$\Delta C A T \cong \Delta D D G$

| Statements | Reasons |
| :--- | :--- | :--- |
| 1. $\overline{G E} \cong \overline{O E}$ and $\overline{G M} \cong \overline{O M}$ | 1. Given |
| 2. $\overline{E M} \cong \overline{E M}$ | 2. reflexive property |
| 3. $\triangle G E M \cong M O T M$ | |

3. Based on the given information, what additional information is needed in order to prove the triangles congruent by the ŚAŚS Postulate? \qquad
Given: $\overline{J L} \cong \overline{P R}$ and $\overline{J K} \cong \overline{P Q}$

Write a congruence statement.
$\triangle J K L=\Delta Q Q R$

Statements	Reasons
1. $\overline{G E} \cong \overline{O M}$ and $\angle G E M \cong \angle O M E$	1. Given
2. $\overline{E M} \cong$	2. reflexive property
3. $\triangle G E M \cong \triangle O M E$	3. SAS

Congruence Criteria and Proof: ASA, AAS, and HL

Angle-Side-Angle (ASA) Triangle Congruence Postulate: If two angles and the included side in one triangle are congruent to two angles and the included side in another triangle, then the triangles are congruent.

Angle-Angle-Side (AAS) Triangle Congruence Postulate: If two angles and the non-included side in one triangle are congruent to two angles and the non-included side in another triangle, then the triangles are congruent.

Hypotenuse-Leg (HL). In a right triangle if you know a leg and the hypotenuse are congruent to the leg and hypotenuse in another triangle, then the right triangles are congruent.
5. What additional information is needed?

Given: $\overline{J K} \cong \overline{P Q}$ and $\angle K \cong \angle Q$
Prove: $\triangle J K L \cong \triangle P Q R$ by ASA

ASA

$\angle J \cong \angle P$
7. What additional information is needed?

Given: $\overline{J K} \cong \overline{P Q}$ and $\angle K \cong \angle Q$
Prove: $\triangle J K L \cong \triangle P Q R$ by AAS

9. Given: $\angle E \cong \angle H$

Prove:

8. What additional information is needed?

Given: $\overline{J K} \cong \overline{P Q}$ and $\angle K, \angle Q$ right angles
Prove: $\triangle J K L \cong \triangle P Q R$ by HL

Geometry
1．8（5）and 1．8（6）Congruent Triangles
Objective：I can prove two triangles are congruent using givens，assumptions，and theorems，and I can use CPCTC in a proof（Targets 23－24）

CPCTC is the reason that we can identify congruent sides and angles from a triangle congruence statement．CPCTC stands for Corresponding $\underline{\mathbf{P a r t s}}$ of $\underline{\text { Congruent }} \boldsymbol{T}$ riangles are $\underline{\text { Congruent．}}$

In the proofs below，the＇PROVE＇item is NOT to prove two triangles congruent．．．．It is actually to prove two corresponding pieces（angles or sides）to be congruent．The general strategy will be to first prove triangles to be congruent so that we can make a statement about sides or angles also being congruent．

1．Given：$\angle G F H \cong \angle J F H$

$$
\overline{G F} \cong \overline{J F}
$$

Prove：$\triangle G F H \cong \Delta$ JFH by SAS

What other conclusions can we make？
＜6ミく」 $\angle G H F \cong \angle J H F$

Statements	Reasons
1．HJ $\because \mathrm{KM}$	1．Given
2．$\overline{H H} \approx \overparen{L M}$	2．Given
3．$\overline{L J} \cong \overline{L K}$	3．GNOM
4．$\triangle H V J=\triangle M K$	4．SSS
5. $\angle H \cong$ LM	5. CPCTL

3. Given: R is the midpoint of $S U$

$$
\angle Q \cong \angle T
$$

Prove: $\overline{Q R} \cong \overline{R T}$

More Practice with proofs
4. Given: D is the midpoint of $\overline{B C}$

$$
\overline{A B} \| \overline{E C} \text { parallel }
$$

Prove: $\triangle A D B \cong \triangle E D C$

5. Given: $\overrightarrow{P O}$ bisects $\angle N P Q$

$$
\angle N O P \cong \angle Q O P
$$

Prove: $\overline{O N} \cong \overline{O Q} \quad$ CPCTC

Sumeners	Resass
(1) $\overrightarrow{P O}$ bisects $\angle N$	(1) Given
(2) $\angle N O P \cong \angle Q O P$	(2) Given
(3) $\angle N P O \cong \angle Q P O$	(3) def. of $\angle \mathrm{b}$
(4) $\overline{O P} \cong \overline{O P}$	(4) reflexive propert
(5) $\triangle N O P \cong \triangle Q O P$	5) ASA
(1) $\overline{O N}=\overline{O Q}$	(6) CPCTC

6. Given: $\angle B \cong \angle D$

$$
\overline{A C} \cong \overline{E C}
$$

Prove: $\angle A \cong \angle E \quad$ CPCTC

7. Given: $\overline{D A} \cong \overline{D C}$
$\overline{D B}(\perp) \overline{A C}$ perpendiewlar
Prove: $\triangle A D B \cong \triangle C D B$

Statemens	Resasons
(1) $\overline{D^{A}} \cong \underline{D C}, \overline{D B} \perp \bar{A}$	(1) Given
(2) $\angle D B A$ and $\angle D B C$ are	(2) def. of 1 lines
(3) right angles	(3) reflexive property
$(4 \triangle A D B \cong \triangle C D 3$	(4) HL

8. Given: $\overline{A B} \cong \overline{A D}$

$$
\overline{B C} \cong \overline{D C}
$$

Prove: $\angle B A C \cong \angle D A C \quad C P C \bar{\top}$

	-
(2) $\frac{A B}{3 C} \xlongequal{ }=\frac{A D}{D C}$	(2) Given
$3{ }^{\text {B }}$	(3) reflexive propert
(4) $\triangle A B C \cong \triangle A D C$	(4) sss
(5) $\angle B A C E \angle D A C$	(5) cpict

Geometry

1.9 Triangle Properties

Objective: I can solve for unknowns by using: the sum of the interior angles is 180°; the base angles of an isosceles triangle are congruent; the exterior triangle theorem; and the triangle midsegment theorem (Targets 25-28)

The sum of the interior angles of a triangle is 180° (Triangle Sum Theorem)

Animation of Informal Proof: https://www.youtube.com/watch?v=KwProyEPRgE

1. Determine the measure of the angle.

2. Two of the angles in a triangle are congruent. One of the angle measures in the triangle is 70°. What are the possible measures of the other two angles?

$\frac{110}{2}$

The Base Angles of an Isosceles are Equal (Isosceles Triangle Theorem)

3. Determine the measure of the angle.

b) $\mathrm{m} \angle \mathrm{A}=50^{\circ}$

$$
65+65=130
$$

$$
180-130
$$

$\frac{82}{2}$

4. Solve for $x: \triangle \mathrm{BEG}$ with $\operatorname{leg} \overline{E G}$ and $\overline{E B}, \mathrm{~m} \angle B=(2 x-25)^{\circ}$ and $m \angle E=30^{\circ}$.

$$
\begin{aligned}
180-30 & =150 \quad \frac{150}{2}=75 \\
2 x-25 & =75 \\
725 & =\frac{+25}{2} \\
2 &
\end{aligned}
$$

The converse of the Isosceles Triangle is also true, meaning that if two angles of a triangle are congruent, the triangle must have two congruent sides (opposite from those angles).
\vec{y} congruent L'S
5. $\triangle C A R$ has base angles $\angle A$ and $\angle R$. The perimeter of $\triangle C A R$ is 44 with $C A=20$. Find the lengths of the other two sides.

$$
C R=20
$$

because it is $\cong \overline{C A}$

$$
\begin{aligned}
& 20+20=40 \\
& 44-40=4
\end{aligned}
$$

$A R=4$

Each exterior angle of a triangle is equal to the sum of its two remote interior angles.

 (Exterior Angle Theorem)What is an exterior angle?

What are its remote interior angles?

Animation of informal proof: https://www.youtube.com/watch?v=NpVsF4St6eI
6. Determine the missing information.

The segment joining midpoints of two sides of a triangle is parallel to the third side and half the length.
(Midsegment Theorem)

Video of Informal Proof: https://www.youtube.com/watch?v=nF Ltl4YSsI
7. Determine the missing information.
a) $x=27$

$2(13.5)=x$

c) $x=$

8. $\quad \triangle P Q R$ has side lengths 20,18 , and 24.

Given that X, Y, and Z are the midpoints of the sides of $\triangle P Q R$, find the perimeter of $\triangle \mathrm{XYZ}$.
9. Find the missing values:

d)

$$
x=\sum 6 \quad y=-12 \mathrm{~cm}
$$

e)

